Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
ChemMedChem ; : e202400052, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38517377

ABSTRACT

A series of spirocyclopropyl oxindoles with benzimidazole substitutions was synthesized and tested for their cytotoxicity against selected human cancer cells. Most of the molecules exhibited significant antiproliferative activity with compound 12 p being the most potent. It exhibited significant cytotoxicity against MCF-7 breast cancer cells (IC50 value 3.14±0.50 µM), evidenced by the decrease in viable cells and increased apoptotic features during phase contrast microscopy, such as AO/EB, DAPI and DCFDA staining studies. Compound 12 p also inhibited cell migration in wound healing assay. Anticancer potential of 12 p was proved by the inhibition of tubulin polymerization with IC50 of 5.64±0.15 µM. These results imply the potential of benzimidazole substituted spirocyclopropyl oxindoles, notably 12 p, as cytotoxic agent for the treatment of breast cancer.

2.
Inflammopharmacology ; 32(2): 1203-1223, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38451395

ABSTRACT

For treating chronic diseases like rheumatoid arthritis, herbal medicines are preferred due to their evident therapeutic effects and lesser side effects as compared to the long-term used conventional drugs. In this study, the anti-rheumatoid arthritis effect of an unexplored marine grass Halodule pinifolia (HP), and a combination of it with Glycyrrhiza glabra (liquorice; LQ), prepared as a conventional suspension (C1) and a lipid nano-emulsion (C1-N) was evaluated in Freund's complete adjuvant (FCA)- and collagen-induced arthritis (CIA) models. Formulations C1 and C1-N contained standardized extract HP (100 mg/kg) as major active ingredient and liquorice LQ (50 mg/kg) as both active ingredient (anti-inflammatory and anti-ulcer) and sweetening agent. Oral administration of HP and C1 to FCA-induced Sprague-Dawley rats significantly reduced the paw oedema, spleen index, controlled the haematological parameters, cytokine levels (IL-1ß, IL-6, TNF-α estimated by ELISA), mRNA expression of cytokines and osteoclast markers (RANK, TRAP and cathepsin K measured by RTPCR). Histopathology and radiological scanning demonstrated lesser joint deterioration in sample-treated rats, as evident phenotypically. The downregulation of CD51 and MMP-3 (western blot) corroborated the anti-arthritic effect of HP and C1. HP showed better results among all. Further, under the CIA model, both C1 and C1-N were found to be potentially active as evidenced by their effect on rat paw oedema, spleen index, haematological parameters, rheumatoid factor, cytokines, osteoclast markers, histology and X-rays. The results proved the anti-arthritic effect of HP and the formulations, particularly the lipid nano-emulsion that showed improved stability as well as activity.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Rats , Animals , Rats, Sprague-Dawley , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Arthritis, Experimental/metabolism , Cytokines/metabolism , Edema/drug therapy , Lipids
3.
Int Immunopharmacol ; 132: 111921, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38547770

ABSTRACT

Interleukin-1-beta (IL-1ß) one of the biomarkers for oral squamous cell carcinoma (OSCC), is upregulated in tumor-microenvironment (TME) and associated with poor patient survival. Thus, a novel modulator of IL-1ß would be of great therapeutic value for OSCC treatment. Here we report regulation of IL-1ß and TME by histone deacetylase-6 (HDAC6)-inhibitor in OSCC. We observed significant upregulation of HDAC6 in 4-nitroquniline (4-NQO)-induced OSCC in mice and 4-NQO & Lipopolysaccharide (LPS) stimulated OSCC and fibroblast cells. Tubastatin A (TSA)-attenuated the OSCC progression in mice as observed improvement in the histology over tongue and esophagus, with reduced tumor burden. TSA treatment to 4-NQO mice attenuated protein expression of HDAC6, pro-and-mature-IL-1ß and pro-and-cleaved-caspase-1 and ameliorated acetylated-tubulin. In support of our experimental work, human TCGA analysis revealed HDAC6 and IL-1ß were upregulated in the primary tumor, with different tumor stages and grades. We found TSA modulate TME, indicated by downregulation of CD11b+Gr1+-Myeloid-derived suppressor cells, CD11b+F4/80+CD206+ M2-macrophages and increase in CD11b+F4/80+MHCII+ M1-macrophages. TSA significantly reduced the gene expression of HDAC6, IL-1ß, Arginase-1 and iNOS in isolated splenic-MDSCs. FaDu-HTB-43 and NIH3T3 cells stimulated with LPS and 4-NQO exhibit higher IL-1ß levels in the supernatant. Interestingly, immunoblot analysis of the cell lysate, we observed that TSA does not alter the expression as well as activation of IL-1ß and caspase-1 but the acetylated-tubulin was found to be increased. Nocodazole pre-treatment proved that TSA inhibited the lysosomal exocytosis of IL-1ß through tubulin acetylation. In conclusion, HDAC6 inhibitors attenuated TME and cancer progression through the regulation of IL-1ß in OSCC.


Subject(s)
Histone Deacetylase 6 , Histone Deacetylase Inhibitors , Hydroxamic Acids , Indoles , Interleukin-1beta , Mouth Neoplasms , Tumor Microenvironment , Animals , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase 6/metabolism , Interleukin-1beta/metabolism , Humans , Mouth Neoplasms/drug therapy , Mouth Neoplasms/pathology , Mouth Neoplasms/immunology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Mice , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/immunology , Mice, Inbred C57BL , Cell Line, Tumor , Disease Progression , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , Male , Tubulin/metabolism , Lipopolysaccharides
4.
Drug Deliv Transl Res ; 14(1): 116-130, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37402943

ABSTRACT

Human immunodeficiency virus (HIV) mainly attacks lymphocytes of the human immune system. The untreated infection leads to acquired immune deficiency syndrome (AIDS). Ritonavir (RTV) belongs to protease inhibitors (PIs), the crucial contributors of the combination therapy used in the treatment of HIV that is called highly active antiretroviral therapy (HAART). Formulations targeting the lymphatic system (LS) play a key role in delivering and maintaining therapeutic drug concentrations in HIV reservoirs. In our previous study, we developed RTV-loaded nanostructured lipid carriers (NLCs), which contain the natural antioxidant alpha-tocopherol (AT). In the current study, the cytotoxicity of the formulation was studied in HepG2, MEK293, and H9C2 cell lines. The formulation efficacy to reach the LS was evaluated through a cycloheximide-injected chylomicron flow blockade model in Wistar rats. Biodistribution and toxicity studies were conducted in rodents to understand drug distribution patterns in various organs and to establish the safety profile of the optimized formulation (RTV-NLCs). From the MTT assay, it was found that the cell viability of the formulation is comparable with the pure drug (RTV-API). More than 2.5-folds difference in AUC was observed in animals treated with RTV-NLCs with and without cycloheximide injection. Biodistribution studies revealed higher drug exposure in the lymphoidal organs with the RTV-NLCs. No significant increase in serum biomarkers for hepatotoxicity was observed in rats dosed with the RTV-NLCs. The current study reveals the lymphatic uptake of the RTV-NLCs and their safety in rodents. As the tissue distribution of RTV-NLCs is high, hence re-adjusting the RTV-NLCs dose to get the response equivalent to RTV-API may be more beneficial with respect to its safety and efficacy.


Subject(s)
HIV Infections , Nanostructures , Rats , Humans , Animals , Ritonavir/therapeutic use , Tissue Distribution , Rats, Wistar , Drug Tapering , Cycloheximide/therapeutic use , Lipids , HIV Infections/drug therapy , Drug Carriers , Particle Size
5.
Chembiochem ; 25(4): e202300783, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38038368

ABSTRACT

Zinc homeostasis, which allows optimal zinc utilization in diverse life processes, is responsible for the general well-being of human beings. This paper describes developing and validating an easily accessible indole-containing zinc-specific probe in the cellular milieu. The probe was synthesized from readily available starting materials and was subjected to steady-state fluorescence studies. It showed selective sensing behavior towards Zn2+ with reversible binding. The suppression of PET (Photoinduced Electron Transfer) and ESIPT (Excited State Intramolecular Proton Transfer) elicited selectivity, and the detection limit was 0.63 µM (LOQ 6.8 µM). The zinc sensing capability of the probe was also screened in the presence of low molecular weight ligands [LMWLs] and showed interference only with GSH and ATP. It is non-toxic and can detect zinc in different cell lines under various stress conditions such as inflammation, hyperglycemia, and apoptosis. The probe could stain the early and late stages of apoptosis in PAN-2 cells by monitoring the zinc release. Most experiments were conducted without external zinc supplementation, showing its innate ability to detect zinc.


Subject(s)
Protons , Zinc , Humans , Zinc/chemistry , Spectrometry, Fluorescence , Lysosomes , Fluorescent Dyes/chemistry
6.
Bioorg Med Chem Lett ; 96: 129494, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37797804

ABSTRACT

A new class of benzimidazole derivatives as tubulin polymerization inhibitors has been designed and synthesized in this study. The in vitro anticancer profile of the developed molecules was reconnoitred on selected human cancer cells. The highest cytotoxicity was illustrated by compounds 7n and 7u with IC50 values ranging from 2.55 to 17.89 µM with specificity toward SK-Mel-28 cells. They displayed 5-fold less cytotoxicity towards normal rat kidney epithelial NRK52E cells, which implies that they are not harmful to normal, healthy cells. The cellular staining procedures like AO/EB, DCFDA, and DAPI were applied to comprehend the inherent mechanism of apoptosis which displayed nuclear and morphological alterations. The Annexin V binding and JC-1 studies were executed to evaluate the extent of apoptosis and the decline in mitochondrial transmembrane potential in SK-Mel-28 cell lines. Compound 7n dose-dependently arrested the G2/M phase of the cell cycle and the target-based outcomes proposed tubulin polymerization inhibition by 7n (IC50 of 5.05±0.13 µM). Computational studies were also conducted on the tubulin protein (PDB ID: 3E22) to investigate the stabilized binding interactions of compounds 7n and 7u with tubulin, respectively.


Subject(s)
Antineoplastic Agents , Tubulin Modulators , Rats , Humans , Animals , Structure-Activity Relationship , Tubulin Modulators/chemistry , Cell Proliferation , Drug Screening Assays, Antitumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Tubulin/metabolism , Cell Line, Tumor , Apoptosis , Benzimidazoles/pharmacology , Polymerization
7.
Int J Biol Macromol ; 253(Pt 5): 127142, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37797853

ABSTRACT

In the present study, polymeric nanoparticles loaded with IRI and quercetin, a p-gp inhibitor, were developed to target folate receptors expressed by colon cancer cells for oral targeted delivery. This work reports the development of PNPs with an entrapment efficiency of 41.26 ± 0.56 % for IRI and 55.83 ± 4.51 for QT. PNPs were further surface modified using chitosan-folic acid conjugates for better targetability to obtain folic acid-chitosan coated nanoparticles. DLS and FeSEM revealed particles in the nanometric size range with spherical morphology, while FTIR and DSC provided details on their structure and encapsulation. In vitro drug release studies confirmed a sustained release pattern of IRI and QT, while cell line studies confirmed the superiority of C-FA-PNPs when tested on Caco2 cells. Pharmacodynamic studies in colon cancer induced rats showed similar efficacy for PNPs and C-FA-PNPs. Further examination from a bio-distribution study in healthy rats, revealed the failure of C-FA-PNPs to deliver the drugs to the colon adequately, while the PNPs improved the available concentration of IRI at the colon by almost 1.8 folds when compared to the available marketed product. Hence, the developed PNP formulation sticks out as a plausible substitute for the intravenous dosage forms of IRI which have been conventionally prevailing.


Subject(s)
Chitosan , Colonic Neoplasms , Nanoparticles , Humans , Rats , Animals , Drug Carriers/chemistry , Chitosan/chemistry , Folic Acid/chemistry , Caco-2 Cells , Polymers/chemistry , Nanoparticles/chemistry , Colonic Neoplasms/drug therapy
8.
Microb Pathog ; 184: 106380, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37821049

ABSTRACT

In developing countries, diarrhoea is a major issue of concern, where consistent use of antibiotics has resulted in several side effects along with development of resistance among pathogens against these antibiotics. Since natural products are becoming the treatment of choice, therefore present investigation involves mechanistic evaluation of antidiarrhoeal potential of Begonia roxburghii and its marker rutin against Shigella flexneri (SF) induced diarrhoea in rats following in vitro, in vivo and in silico protocols. The roots of the plant are used as vegetable in the North East India and are also used traditionally in treating diarrhoea. Phytochemically standardized ethanolic extract of B. roxburghii (EBR) roots and its marker rutin were first subjected to in vitro antibacterial evaluation against SF. Diarrhoea was induced in rats using suspension of SF and various diarrhoeagenic parameters were examined after first, third and fifth day of treatment at 100, 200 and 300 mg/kg, p.o. with EBR and 50 mg/kg, p.o. with rutin respectively. Additionally, density of SF in stools, stool water content, haematological and biochemical parameters, cytokine profiling, ion concentration, histopathology and Na+/K+-ATPase activity were also performed. Molecular docking and dynamics simulation studies of ligand rutin was studied against secreted extracellular protein A (Sep A, PDB: 5J44) from SF and Inducible nitric oxide synthase (iNOS, PDB: 1DD7) followed by network pharmacology. EBR and rutin demonstrated a potent antibacterial activity against SF and also showed significant recovery from diarrhoea (EBR: 81.29 ± 0.91% and rutin: 75.27 ± 0.89%) in rats after five days of treatment. EBR and rutin also showed significant decline in SF density in stools, decreased cytokine expression, potential antioxidant activity, cellular proliferative nature and recovered ion loss due to enhanced Na+/K+-ATPase activity, which was also supported by histopathology. Rutin showed a very high docking score of -11.61 and -9.98 kcal/mol against iNOS and Sep A respectively and their stable complex was also confirmed through dynamics, while network pharmacology suggested that, rutin is quite capable of modulating the pathways of iNOS and Sep A. Thus, we may presume that rutin played a key role in the observed antidiarrhoeal activity of B. roxburghii against SF induced diarrhoea.


Subject(s)
Begoniaceae , Rutin , Rats , Animals , Rutin/pharmacology , Rutin/therapeutic use , Shigella flexneri , Begoniaceae/metabolism , Antidiarrheals/therapeutic use , Nitric Oxide Synthase Type II/metabolism , Molecular Docking Simulation , Diarrhea/drug therapy , Diarrhea/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cytokines/metabolism , Adenosine Triphosphatases/metabolism
9.
Mol Pharm ; 20(12): 5981-6009, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37899551

ABSTRACT

Gene expression at the transcriptional level is altered by epigenetic modifications such as DNA methylation, histone methylation, and acetylation, which can upregulate, downregulate, or entirely silence genes. Pathological dysregulation of epigenetic processes can result in the development of cancer, neurological problems, metabolic disorders, and cardiovascular diseases. It is of promising therapeutic interest to find medications that target these epigenetic alterations. Despite the enormous amount of work that has been done in this area, very few molecules have been approved for clinical purposes. This article provides a comprehensive review of recent advances in epigenetic therapeutics for cancer, with a specific focus on emerging delivery and development strategies. Various delivery systems, including pro-drugs, conjugated molecules, nanoparticles (NPs), and liposomes, as well as remedial strategies such as combination therapies, and epigenetic editing, are being investigated to improve the efficacy and specificity of epigenetic drugs (epi-drugs). Furthermore, the challenges associated with available epi-drugs and the limitations of their translation into clinics have been discussed. Target selection, isoform selectivity, physiochemical properties of synthesized molecules, drug screening, and scalability of epi-drugs from preclinical to clinical fields are the major shortcomings that are addressed. This Review discusses novel strategies for the identification of new biomarkers, exploration of the medicinal chemistry of epigenetic modifiers, optimization of the dosage regimen, and design of proper clinical trials that will lead to better utilization of epigenetic modifiers over conventional therapies. The integration of these approaches holds great potential for improving the efficacy and precision of epigenetic treatments, ultimately benefiting cancer patients.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/genetics , DNA Methylation , Epigenesis, Genetic , Pharmaceutical Preparations , Biomarkers
10.
Front Plant Sci ; 14: 1150909, 2023.
Article in English | MEDLINE | ID: mdl-37615019

ABSTRACT

Introduction: Waterlogging is a major stress that severely affects onion cultivation worldwide, and developing stress-tolerant varieties could be a valuable measure for overcoming its adverse effects. Gathering information regarding the molecular mechanisms and gene expression patterns of waterlogging-tolerant and sensitive genotypes is an effective method for improving stress tolerance in onions. To date, the waterlogging tolerance-governing molecular mechanism in onions is unknown. Methods: This study identified the differentially expressed genes (DEGs) through transcriptome analysis in leaf tissue of two onion genotypes (Acc. 1666; tolerant and W-344; sensitive) presenting contrasting responses to waterlogging stress. Results: Differential gene expression analysis revealed that in Acc. 1666, 1629 and 3271 genes were upregulated and downregulated, respectively. In W-344, 2134 and 1909 genes were upregulated and downregulated, respectively, under waterlogging stress. The proteins coded by these DEGs regulate several key biological processes to overcome waterlogging stress such as phytohormone production, antioxidant enzymes, programmed cell death, and energy production. The clusters of orthologous group pathway analysis revealed that DEGs contributed to the post-translational modification, energy production, and carbohydrate metabolism-related pathways under waterlogging stress. The enzyme assay demonstrated higher activity of antioxidant enzymes in Acc. 1666 than in W-344. The differential expression of waterlogging tolerance related genes, such as those related to antioxidant enzymes, phytohormone biosynthesis, carbohydrate metabolism, and transcriptional factors, suggested that significant fine reprogramming of gene expression occurs in response to waterlogging stress in onion. A few genes such as ADH, PDC, PEP carboxylase, WRKY22, and Respiratory burst oxidase D were exclusively upregulated in Acc. 1666. Discussion: The molecular information about DEGs identified in the present study would be valuable for improving stress tolerance and for developing waterlogging tolerant onion varieties.

11.
Bioconjug Chem ; 34(9): 1528-1552, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37603704

ABSTRACT

Most cancer patients rarely benefit from monodrug therapy because of both cancer complexity and tumor environment. One of the main reasons for this failure is insufficient accumulation of the optimal dose at the tumorous site. Our investigation implies a promising strategy to engineer prodrug nanoparticles (NPs) of bortezomib (BTZ) and selenium (Se) using sialic acid (SAL) as a ligand to improve breast cancer therapy. BTZ was conjugated with SAL and HPMA (N-2-hydroxypropyl methacrylamide) to prepare a prodrug conjugate; BTZ-SAL-HPMA (BSAL-HP) and then fabricated into prodrug NPs with Se (Se_BSAL-HP prodrug NPs). The self-assembly of prodrug NPs functionalized with Se showed size (204.13 ± 0.02 nm) and zeta potential (-31.0 ± 0.11 mV) in dynamic light scattering (DLS) experiments and spherical shape in TEM and SEM analysis. Good stability and low pH drug release profile were characterized by Se_BSAL-HP prodrug NPs. The tumor-selective boronate-ester-based prodrug NPs of BTZ in combination with Se endowed a synergistic effect against cancer cells. Compared to prodrug conjugate, Se_BSAL-HP prodrug NPs exhibited higher cell cytotoxicity and enhanced cellular internalization with significant changes in mitochondria membrane potential (MMP). Elevated apoptosis was observed in the (G2/M) phase of the cell cycle for Se_BSAL-HP prodrug NPs (2.7-fold) higher than BTZ. In vivo studies were performed on Sprague-Dawley rats and resulted in positive trends. The increased therapeutic activity of Se_BSAL-HP prodrug NPs inhibited primary tumor growth and showed 43.05 fold decrease in tumor volume than the control in 4T1 tumor bearing mice. The surprising and remarkable outcomes for Se_BSAL-HP prodrug NPs were probably due to the ROS triggering effect of boronate ester and selenium given together.


Subject(s)
Neoplasms , Prodrugs , Selenium , Rats , Animals , Mice , Rats, Sprague-Dawley , Prodrugs/therapeutic use , N-Acetylneuraminic Acid , Bortezomib/pharmacology , Bortezomib/therapeutic use , Esters
12.
Int J Pharm ; 642: 123189, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37391107

ABSTRACT

The packaging of antimicrobials/chemotherapeutics into nanoliposomes can enhance their activity while minimizing toxicity. However, their use is still limited owing to inefficient/inadequate loading strategies. Several bioactive(s) which are non ionizable, and poorly aqueous soluble cannot be easily encapsulated into aqueous core of liposomes by using conventional means. Such bioactive(s) however could be encapsulated in the liposomes by forming their water soluble molecular inclusion complex with cyclodextrins. In this study, we developed Rifampicin (RIF) - 2-hydroxylpropyl-ß-cyclodextrin (HP-ß-CD) molecular inclusion complex. The HP-ß-CD-RIF complex interaction was assessed by using computational analysis (molecular modeling). The HP-ß-CD-RIF complex and Isoniazid were co-loaded in the small unilamellar vesicles (SUVs). Further, the developed system was functionalized with transferrin, a targeting moiety. Transferrin functionalized SUVs (Tf-SUVs) could preferentially deliver their payload intracellularly in the endosomal compartment of macrophages. In in vitro study on infected Raw 264.7 macrophage cells revealed that the encapsulated bioactive(s) could eradicate the pathogen more efficiently than free bioactive(s). In vivo studies further revealed that the Tf-SUVs could accumulate and maintain intracellular bioactive(s) concentrations in macrophages. The study suggests Tf-SUVs as a promising module for targeted delivery of a drug combination with improved/optimal therapeutic index and effective clinical outcomes.


Subject(s)
Drug Delivery Systems , Liposomes , Transferrin , 2-Hydroxypropyl-beta-cyclodextrin , Antitubercular Agents , Rifampin , Macrophages
13.
Environ Dev Sustain ; : 1-42, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-37363015

ABSTRACT

The study covers the concepts involved in reverse supply chain modeling using the case of a manufacturing company. The purpose of this study is to build a sustainable reverse supply chain model for resource conservation through remanufacturing of stator shafts by using a discrete-event simulation approach. The simulation studies in the reverse supply chain have taken up cases of either plastic or electronic waste remanufacturing, while very limited studies deal with simulation of sustainable reverse supply chains using a manufacturing industry case study from international customers. In this study, reverse supply chain using simulation study in manufacturing sector is carried out using Arena Rockwell simulation software. The simulation model is built using discrete-event simulation for returns from customers of two developed countries, i.e., Germany and the USA to Chennai, India. The study emphasizes full container load and less than container load modes of shipment scenarios and multiple return cases. The comparative analysis suggests that the value-added and non-value-added time of the reverse supply chain is slightly greater in the less container load scenario. The wait time per entity in remanufacturing processes similar for both shipment scenarios varies significantly based on return cases. The cost and carbon emission associated with transportation, in the reverse supply chain inclusive of social carbon cost, have also been estimated. Therefore, the study proposes a possible sustainable reverse supply chain framework that could be adopted by different manufacturing industries and yield opportunities for performance improvement.

14.
Bioorg Med Chem ; 90: 117297, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37343499

ABSTRACT

Herein, regiospecific nucleophilic ring-opening of spiroaziridine oxindoles has been established to afford 3-substituted-thiooxindole derivatives as anticancer agents. Among the new series, compounds 7d and 9c exhibited promising cytotoxic activity toward HCT-116 cells with IC50 values of 6.73 ± 0.36 and 6.64 ± 0.95 µM, respectively. Further, AO/EB, DCFDA, and DAPI staining studies were executed to establish the underlying apoptosis mechanism which displayed significant nuclear and morphological alterations. JC-1 staining and annexin V binding assay inferred the loss of mitochondrial membrane potential in HCT-116 cancer cells. Cell cycle analysis showed the treatment of 9c against HCT-116 cells, arrested the cell cycle in G2-M phase. In addition, tubulin binding assay revealed that compound 9c exhibited tubulin polymerase inhibition with IC50 value of 9.73 ± 0.18 µM. This inhibition of tubulin polymerase was further supported by binding interactions of 9c with tubulin through docking studies on PDB ID: 3E22.


Subject(s)
Antineoplastic Agents , Tubulin , Structure-Activity Relationship , Polymerization , Tubulin/metabolism , Drug Screening Assays, Antitumor , Cell Proliferation , Antineoplastic Agents/chemistry , Apoptosis , Tubulin Modulators/chemistry , Cell Line, Tumor
15.
Life Sci ; 321: 121574, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36931496

ABSTRACT

AIMS: Here, we report the effect of histone deacetylase 3 (HDAC3) inhibition associated with macrophage activation, IL-1ß expression, angiogenesis and wound healing in diabetic mice. MAIN METHODS: To determine the expression of HDAC3 in diabetic mice wounds, hyperglycemia was induced in C57BL/6 mice with streptozotocin followed by induction of 6 mm wounds. To understand the effect of HDAC3 selective inhibitor, BG45, wound tissues were isolated for analysing M1/M2 markers expression, immune cells infiltration, angiogenesis and healing factors expression. CD11b+F4/80+ cells were sorted from the wound tissues and analysed for the expression of M1/M2 markers using RT-qPCR and flow cytometer. In cell based assays, HDAC3 expression was measured in macrophages stimulated with high glucose (HG) plus LPS. Macrophages treated with BG45 and HG + LPS were analysed for the expression of pro-IL-1ß, mature IL-1ß, oxidative stress and pro-inflammatory (M1) and anti-inflammatory (M2) factors. KEY FINDINGS: HDAC3 was found to be upregulated in impaired diabetic mice wounds and in macrophages stimulated with HG + LPS. Topical application of BG45 loaded gel accelerated the wound healing in diabetic mice and was evident by improved expression of Collagen-1A, IL-10, TGF-ß, and angiogenesis (CD31, VEGF). BG45 treatment decreased the expression of IL-1ß, TNF-α, and IL-6 (M1 phenotype), reduced oxidative stress and promoted the expression of Arginase-1 and YM1/2 (M2 phenotype) in macrophages treated with HG + LPS. BG45 also improved the expression of CD11b+F4/80+CD206+ cells in wound tissues and reduced expression of inflammatory markers. SIGNIFICANCE: HDAC3 is upregulated in diabetic mice wounds and HDAC3 selective inhibitor promotes the wound healing by regulating macrophage activation, angiogenesis and IL-1ß.


Subject(s)
Diabetes Mellitus, Experimental , Animals , Mice , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Macrophage Activation , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Wound Healing
16.
Arch Pharm (Weinheim) ; 356(5): e2200449, 2023 May.
Article in English | MEDLINE | ID: mdl-36807372

ABSTRACT

A simple "click" protocol was employed in the quest of synthesizing 1,2,3-triazole-linked benzimidazoles as promising anticancer agents on various human cancer cell lines such as A549, HCT116, SK-Mel-28, HT-29, and MCF-7. Compound 12j demonstrated significant cytotoxic potential towards SK-Mel-28 cancer cells (IC50 : 4.17 ± 0.09 µM) and displayed no cytotoxicity (IC50 : > 100 µM) against normal human BEAS-2B cells inferring its safety towards normal healthy cells. Further to comprehend the underlying apoptosis mechanisms, AO/EB, dichlorodihydrofluorescein diacetate (DCFDA), and 4',6-diamidino-2-phenylindole (DAPI) staining were performed, which revealed the nuclear and morphological alterations. Compound 12j displayed impairment in cellular migration and inhibited colony formation. The annexin V binding assay and JC-1 were implemented to evaluate the scope of apoptosis and the loss of the mitochondrial transmembrane potential in SK-Mel-28 cells. Cell-cycle analysis revealed that compound 12j arrested the cells at the G2/M phase in a dose-dependent manner. Target-based assays established the inhibition of tubulin polymerization by 12j at an IC50 value of 5.65 ± 0.05 µM and its effective binding with circulating tumor DNA as a DNA intercalator. The detailed binding interactions of 12j with tubulin and DNA were examined by docking studies on PDB ID: 3E22 and DNA hexamer (PDB ID: 1NAB), respectively.


Subject(s)
Antineoplastic Agents , Tubulin Modulators , Humans , Structure-Activity Relationship , Tubulin Modulators/pharmacology , Tubulin Modulators/chemistry , Intercalating Agents/pharmacology , Drug Screening Assays, Antitumor , Cell Proliferation , Tubulin/metabolism , Antineoplastic Agents/chemistry , Apoptosis , DNA , Molecular Docking Simulation , Polymerization
17.
Mol Pharm ; 20(1): 524-544, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36306447

ABSTRACT

Breast cancer leads to the highest mortality among women resulting in a major clinical burden. Multidrug therapy is more efficient in such patients compared to monodrug therapy. Simultaneous combinatorial or co-delivery garnered significant interest in the past years. Caffeic acid (CFA) (a natural polyphenol) has received growing attention because of its anticarcinogenic and antioxidant potential. Bortezomib (BTZ) is a proteasome inhibitor and may be explored for treating breast cancer. Despite its high anticancer activity, the low water solubility and chemical instability restrict its efficacy against solid tumors. In the present study, we designed and investigated a HP-PCL (N-2-hydroxypropylmethacrylamide-polycaprolactone) polymeric micellar (PMCs) system for the simultaneous delivery of BTZ and CFA in the treatment of breast cancer. The designed BTZ+CFA-HP-PCL PMCs were fabricated, optimized, and characterized for size, zeta potential, surface morphology, and in vitro drug release. Developed nanosized (174.6 ± 0.24 nm) PMCs showed enhanced cellular internalization and cell cytotoxicity in both MCF-7 and MDA-MB-231 cells. ROS (reactive oxygen species) levels were highest in BTZ-HP-PCL PMCs, while CFA-HP-PCL PMCs significantly (p < 0.001) scavenged the ROS generated in 2',7'-dichlorofluorescein diacetate (DCFH-DA) assay. The mitochondrial membrane potential (MMP) assay revealed intense and significant green fluorescence in both types of cancer cells when treated with BTZ-HP-PCL PMCs (p < 0.001) indicating apoptosis or cell death. The pharmacokinetic studies revealed that BTZ-HP-PCL PMCs and BTZ+CFA-HP-PCL PMCs exhibited the highest bioavailability, enhanced plasma half-life, decreased volume of distribution, and lower clearance rate than the pure combination of drugs. In the organ biodistribution studies, the combination of BTZ+CFA showed higher distribution in the spleen and the heart. Overall findings of in vitro studies surprisingly resulted in better therapeutic efficiency of BTZ-HP-PCL PMCs than BTZ+CFA-HP-PCL PMCs. However, the in vivo tumor growth inhibition study performed in tumor-induced mice concluded that the tumor growth was inhibited by both BTZ-HP-PCL PMCs and BTZ+CFA-HP-PCL PMCs (p < 0.0001) more efficiently than pure BTZ and the combination (BTZ+CFA), which may be due to the conversion of boronate ester into boronic acid. Henceforth, the combination of BTZ and CFA provides further indications to be explored in the future to support the hypothesis that BTZ may work with polyphenol (CFA) in the acidic environment of the tumor.


Subject(s)
Antineoplastic Agents , Proteasome Inhibitors , Female , Mice , Animals , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Micelles , Reactive Oxygen Species , Tissue Distribution , Drug Therapy, Combination , Leprostatic Agents/therapeutic use , Bortezomib/pharmacology , Bortezomib/chemistry , Polymers/chemistry , Cell Line, Tumor , Antineoplastic Agents/chemistry
18.
Inflamm Res ; 72(2): 221-236, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36418464

ABSTRACT

OBJECTIVE AND DESIGN: To understand the expression of dsRNA-dependent protein kinase R (PKR) in impaired diabetic wounds, hyperglycemia was induced in C57/BL6 mice with streptozotocin. Murine macrophage cell line, Raw 264.7, stimulated with high glucose and LPS was used to mimic diabetic wound environment in in-vitro. MATERIALS: Macrophages stimulated with HG + LPS, in presence and absence of PKR inhibitor (C16) and wound tissue samples from topically treated mice with C16, were analyzed for the expression of PKR, NALP3, active caspase-1, mature IL-1ß and phosphorylation of PKR and eIF2α. Wounds tissues were also analyzed for inflammatory cell infiltration by immunohistochemistry, angiogenesis by CD31 staining, collagen expression by western blotting, expression of CD206+ macrophages by flow cytometry and wound strength by texture analyzer. RESULTS: PKR and NALP3 were found to be upregulated in macrophages stimulated with HG + LPS as well as in impaired diabetic wounds. PKR inhibition using C16 ameliorated expression of NALP3, caspase-1, IL-1ß and phosphorylation of PKR and eIF2α, in macrophages and also in diabetic wounds. Treatment with C16 promoted the wound healing in diabetic mice by increasing collagen synthesis, reducing infiltration of F4/80+ macrophages and MPO+ neutrophil cells, increased angiogenesis, and increased number of M2 macrophages. CONCLUSION: PKR inhibition using C16 accelerates the wound healing process in diabetic mice by decreasing NALP3-mediated IL-1ß maturation.


Subject(s)
Diabetes Mellitus, Experimental , Mice , Animals , Diabetes Mellitus, Experimental/metabolism , Lipopolysaccharides/pharmacology , Wound Healing/physiology , Caspase 1 , Protein Kinases
19.
J Mater Chem B ; 11(1): 188-203, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36477106

ABSTRACT

Dual-state emissive fluorogens (DSE-gens) are currently defining their importance as a transpiring tool in biological and biomedical applications. This work focuses on designing and synthesizing indole-anthracene-based solid-state emitting twisted π-conjugates using a metal-free protocol to achieve AIE-active DSE-gens, expanding their scope in biological applications. Special effort has been made to introduce proficient and photo/thermostable DSE-gens that inhibit cancer but not normal cells. Here, the lead DSE-gen initially detects cancer and normal cells by bioimaging; however, it could also confirm and distinguish cancer cells from normal cells by its abated fluorescence signal after killing cancer cells. In contrast, the fluorescence signals for a normal cell remain unscathed. Surprisingly, these molecules displayed decent anticancer properties against FaDu and 4T1 but not MCF-7 cell lines. From a series of newly designed indole-based molecules, we report one single 2,3,4-trimethoxybenzene-linked DSE-gen (the lead), exhibiting high ROS generation, less haemolysis, and less cytotoxicity than doxorubicin (DOX) for normal cells, crucial parameters for a biocompatible in vitro anticancer probe. Thus, we present a potentially applicable anticancer drug, offering a bioactive material with bioimaging efficacy and a way to detect dead cancer cells selectively. The primary mechanism behind the identified outcomes is deciphered with the support of experimental (steady-state and time-resolved fluorescence, biological assays, cellular uptake) and molecular docking studies.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Molecular Docking Simulation , Antineoplastic Agents/pharmacology , Doxorubicin/pharmacology
20.
Int Immunopharmacol ; 112: 109264, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36183679

ABSTRACT

Krüppel-like factor 2 (KLF2) and NLR family pyrin domain containing 3 (NALP3) are important regulators of macrophage activation in the context of various pathological conditions. NALP3 also plays an important role in the maturation of IL-1 ß which is central to the pathogenesis of acute oxalate nephropathy. The functional role of KLF2 and regulation of both KLF2 and NALP3 in the pathogenesis of acute oxalate nephropathy is comparably less studied. Here, we explored the regulation of KLF2 and NALP3 by Histone deacetylase 5 (HDAC5) in oxalate crystals stimulated macrophages, and in the pathogenesis of acute oxalate nephropathy in mice. We observed upregulated expression of HDAC5 along with IL-1ß, Caspase1, and NALP3, while the expression of KLF2 was downregulated in stimulated macrophages and in the renal tissue of mice with acute oxalate nephropathy. We formulated chitosan HDAC5 siRNA nanoparticles to deliver the siRNA in in-vitro and in-vivo settings. siHDAC5 treated cells exhibited decreased expression of IL-1ß, and TNF-α in the supernatant, and reduced expression of NALP3, Pro-caspase1, active caspase1, Pro-IL-1ß, and IL-1ß in cell lysate. Concurrently, the expression of KLF2 was upregulated in HDAC5 depleted cells upon stimulation with crystals. Mice treated with siHDAC5 nanoparticles showed protection against renal impairment with improved renal function (plasma BUN and creatinine levels), reduced inflammation (IL-1ß expression), reduced accumulation of neutrophils, reduced tubular injury, reduced acute renal injury markers (KIM-1, NGAL-1), reduced expression of NALP3, Pro-caspase1, active caspase1, Pro-IL-1ß, and IL-1ß. Whereas, the expression of KLF2 was significantly upregulated by depletion of HDAC5 in mice.


Subject(s)
Acute Kidney Injury , Chitosan , Animals , Mice , Acute Kidney Injury/chemically induced , Acute Kidney Injury/genetics , Acute Kidney Injury/therapy , Creatinine , Disease Models, Animal , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Lipocalin-2/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxalates , RNA Interference , RNA, Small Interfering , Transcription Factors/genetics , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...